Migrating to Object Data M anagement

Arthur M. Keller*
Stanford University
and Persistence Software

Abstract. We discuss issues of migrating
to object data management. We consider
reasons for migration, pitfalls in and benefits
of migration. We also address risk
management, medium term issues and the
migration process. We identify options for
migration to object data management. In
particular, we describe the alternative of
storing data in relational databases and
building object-oriented applications using
C++.

1. Reasonsfor Migration

Let us first consider some reasons for
migrating to object data management. Object
technology enables application development
that can effectively model the organization
and structure of the real-world environment.
Objects encapsulating both state and behavior
can concisely describe the semantics of the
application while facilitating code re-use.
Using object technology, data can be
organized according to the needs of the
application.

When a company engages in process re-
engineering, object technology allows
information system technology to mirror a
company's business. The organization of the

* Author's address: Stanford University, Computer
Science Dept., Stanford, CA 94305,

ark@s. st anf or d. edu; Dr. Keller is also

Chief Technical Advisor to Persistence Software.
This work was supported by Persistence Software,
but the opinions expressed in this paper are solely
those of the author.

T Author's address: Persistence Software, 1700
South Amphlett Blvd., Suite 250, San Mateo, CA
94402t ur ner @ersi stence. com.

Paul Turnef
Persistence Software

company can be reflected in the organization
of the software, and the processes of the
company can be supported by the processes
of the software. Software that allows
flexibility can be restructured to reflect new
business processes.

2. Benefits of Migrating

There are a variety of benefits that companies
expect by migrating to object data
management. By programming in an object
programming language, companies can
achieve faster program development,
improved maintainability, and better
performance. Companies intend to use
migration to realign software to better serve
the needs to the company. Migration can
facilitate support for new applications. The
combination of migration and re-engineering
allows better integration of various
information system processes with corporate
processes. Note that migration does not
require complete elimination of the old
systems: co-existence is possible.
Experiences from Persistence’s customers
confirm much of the above: several
telecommunications customers have reported
application extensibility and ease of
application upgrade through the use of object
technology.

3. Pitfallsto Migration

However, there are several potential
downsides to consider when migrating to
object technology. How will any given
application benefit from object technology?
What will be lost? One common example is
legacy systems. Many companies have a
significant investment in legacy software and
legacy data. Itis critical that any migration

www.manaraa.com



path accommodate these. Accommodating
legacy data is particularly important, because
data formats, once created, can live for
decades.

Over the last decade, many companies have
made a significant investment in relational
databases. They have converted many
applications using CODASYL and other data
organizations to use relational databases.
These companies are rightfully leery of
converting once again to object technology.
An important question is whether companies
can retain the large investment in relational
technology, while adopting object
technology. Within this question, there are
several sub-issues, including how far to
migrate and which mechanisms to employ.
We will investigate these issues in more
depth below.

Another strategic consideration is vendor
relationships and longevity. For those
interested in object technology, a pressing
guestion is which object-oriented database
companies will be around in 5 years. There
are probably more OODBMS vendors
around than the market can support. In part
this is because there are currently more
OODB vendors than relational DBMS
vendors. Will the OODBMS vendor you
choose be one of the survivors?

4. Risksto Migration

Application developers need to carefully
manage the risks associated with migrating to
object technology. By risks, we mean those
factors that affect the successful
implementation of a migration (as opposed to
the value of the end result).

At the outset, we must stress that technical
factors may be the least of one’s worries.
We have seen several projects run into
trouble due to non-technical issues. For
example, while many are aware of external
political considerations, internal issues are
often ignored. The development team must
be on-board; they must view the OO

migration as an opportunity, not a threat.
Other issues include resources, training and
tools. While such issues may be the critical
risk factors to manage, discussion of them is
beyond the scope of this paper.

At a high-level, we think that the increments
and speed of migration may be one of the
most important factors. We believe
companies should not migrate all at once but
should keep old systems running in parallel
with experimental systems and develop a cut-
over/cut-back plan for deployment.

Object data management also requires a
different design process. Developing an
object schema requires more care than
developing a relational schema because there
are more choices, that is, there are more
decisions to make. There is no formal notion
of an object model, so developers need to
think more about object design.

More strategically, developers need to
consider the second system problem — what
do you do for an encore? Modifying systems
that already exist has its own set of issues.
Relational schemata are flat and can be
restructured by access as needed, while object
schemata are already structured according to
the needs of a set of applications. The next
application that is built using the set of
objects may not have the same needs as the
original application.

5. Medium-term Issuesin Migration

Let us consider some medium-term issues in
migrating to object data management. First,
is it better to migrate the existing data into an
object-oriented database, create multiple
copies in both the existing formats and
object-oriented database, or leave all the data
in existing relational databases? Migrating
existing data into an OODB requires that alll
applications be modified to handle the new
database. Such modification is expensive
and probably must be done over time.
Storing data in both formats allows a
transition period but entails integrity

www.manaraa.com



problems. Which copy of each data item is
the latest one? What procedures are there for
synchronizing the data in the two formats.
How expensive is it to maintain both
systems? Concurrency control is also an
important problem with the replicated data
approach. The last alternative is to keep the
data in relational databases and continue
using existing applications, but write new
applications (and also re-engineer existing
ones) using object technology. For many
situations, we believe this last approach is the
most flexible and safest approach.
Developers can afford the time to implement
and evaluate without putting existing users at
risk. Altering migration plans is much easier
and feedback from evaluation cycles is
encouraged instead of avoided. Persistence
Software provides a product, Persistence, that
provides a C++ to relational database
solution.

A related issue is that of the degree of
migration. Application developers should be
mindful of the appropriate data source for an
application. Even when object databases
become a reliable and tested technology,
relational databases will always be better
suited for certain types of data. Even beyond
the legacy database issue, there is going to be
an ongoing need for a connection between
objects and relational data. Planning an
object-based information system involves
determining what kind of data storage to use
for what types of data. In our experience, we
have found that telecommunications
applications are good examples of using C++
and RDBMSes together. Much of the data is
well-suited to an RDBMS (customer
information, call records, billing information,
etc.) and, because of the premium on
leveraging information, high-performance
C++ applications are desired. These
applications often require quick turnaround
and must be enhanced on short notice.

Can all applications use the same object
schema, or do we need a different object
schema for each application? Relational
databases support views and queries that

allow applications to organize their data
according to their needs for representing data.
Object-oriented databases do not support the
view concept, and their queries do not
support data reorganization. When there are
future corporate reorganizations or mergers
and acquisitions, it is likely that there will be
the need to integrate multiple object
schemata, but object-oriented database
systems have little or no support for object
schema integration or object views.

What techniques exist for integrating multiple
object schemata? In the near term, no
commercial technology for such integration
exists, merely limited experiments in the
laboratory. In the long-term, we believe that
these problems will be addressed by a
combination of deductive and object-oriented
databases. With this combination, different
programming teams working on different
parts of a system will describe declaratively
what basic functions they want—the deductive
part. Then they will throw the specifications
together in a compiler that will synthesize the
specifications into a single declarative
structure and generate objects to implement
basic functions. Above this structure,
programmers will develop detailed
algorithms using object technology using the
generated object schema. We can see the
beginnings of such an approach with
products like Persistence, where the object
schema and code to support it are generated
automatically, while detailed application
algorithms are written on top in C++.

6. Future of Relational Databases

Relational databases provide very little
flexibility for data structuring. In
comparison, object databases provide more
flexibility. Relational database vendors are
working on adding more flexibility and
generally incorporating many of the features
available in OODBMSes. Though the
current proposal for SQL3 is too complex, it
is an indication that relational database
vendors recognize the need to provide more
support for flexibility. But despite these

www.manaraa.com



developments, there will still exist an
"iImpedance mismatch" between object
programming languages and enhanced
relational databases, so the niche for
interfacing functionality like that provided by
Persistence will continue to exist. We expect
that the coming improvements in data
structuring, representation, and storage will
make the combination of relational databases
with access through Persistence comparable
to that claimed for object-oriented databases.

7. Future of Object Databases

As previously mentioned, the lack of a robust
view mechanism makes it difficult for

objects designed for one application to be
effectively re-used by other applications

while retaining the encapsulation central to
the object paradigm. However, adding views
to object-oriented database systems is still a
research problem that has not even been
solved in the laboratory yet.

Object-oriented database vendors now
recognize the need to integrate with relational
databases. Furthermore, object-oriented
database vendors are rapidly expanding their
suite of support tools. Currently, most
OODBMS support tools are significantly
behind those of state-of-the-art relational
DBMS products.

We do not expect the object-oriented database
market ever to exceed the size of the

relational database market. Consequently,
there are more companies producing object-
oriented databases than the market will
support, as there are more OODBMS
vendors than relational DBMS vendors.

8. Risk Management

We identify several principles for risk
management in migrating to object data
management. Most importantly, do not
migrate at once. Instead keep the old
systems running in parallel with the new
(experimental) systems until the latter have
been proven successful. Develop a cut-

over/cut-back plan. Choose a simple
application to migrate first; build in adequate
evaluation and refinement time.

Furthermore, insure that sufficient resources
are available to both the new system and the
maintenance of the old. We observed a
severe problem in one project due to
personnel being required to maintain the
existing system while trying to design a new
OO implementation. Do not hesitate to bring
in outside help (or second opinioregrly. In
our experiences with the telecommunications
industry, the willingness to bring in outside
expertise has been a success marker.

Organize data as most appropriate for the
data and applications using it. Some data
really does fit best in relational databases.
Keep that data in the relational databases, and
use object interfaces for object-oriented
programming. Insure that you have the
necessary expertise: you will need both OO
and relational skills. Be wary of religious
factioning (OO vs. RDBMS) amongst the
developers (we have witnessed such
factioning far too often).

Create a clean, quality design first, tune later.
However, do make sure you take the time to
effectively evaluate and tune. In one project,
we observed upwards of a year of wasted
time due to inadequate evaluation and tuning
periods. If you choose the OO language and
RDBMS approach, you will find the maturity
and variety of measuring and tuning tools
very helpful.

Take extra care in developing object
schemata. There are more decisions and
choices than there were in developing
relational schemata. The absence of view
mechanisms for object-oriented databases
makes further migration more difficult.
Remember any schema you create will need
to be used by many applications and for a
long time. Consider the second system
problem. How well will object schemata and
classes developed for the first (experimental)

www.manaraa.com



application fit usage patterns required by
subsequent applications?

9. Conclusion

We have analyzed the process of migrating to
object data management. We have
considered risks and benefits and how to
mitigate those risks. We have observed that
often, much of the benefit of using object
data management arises from object-oriented
programming and does not require storing
data in an object-oriented database. In fact,
continuing to store data in a relational
database, and accessing that data using a
product like Persistence to allow
programming in an object programming
language provides much of the benefit at
significantly reduced risk and cost, as
compared with migrating to an object-
oriented database.

References

Thierry Barsalou, Niki Siambela, Arthur M.
Keller, and Gio Wiederhold, "Updating
Relational Databases through Object-Based
Views," ACM SIGMOD Denver, CO, May
1991.

Michael R. BrodieMigrating Legacy
Systems: Gateways: Interfaces & The
Incremental ApproachMorgan-Kaufmann,
1995.

R.G.G. CattellObject Data Management —
Object-Oriented and Extended Relational
Database SystemAaddison-Wesley, 1991.

R.G.G. Cattell (ed.)The ODMG-93
Standard Addison-Wesley, 1993.

Arthur M. Keller, "Unifying Database and
Programming Language Concepts Using the
Object Model" (extended abstradt)t.
Workshop on Object-Oriented Database
SystemslEEE Computer Society, Pacific
Grove, CA, September 1986.

Arthur M. Keller, Richard Jensen, and
Shailesh Agarwal, "Persistence Software:
Bridging Object-Oriented Programming and
Relational DatabasesfCM SIGMOD May

1993.

www.manaraa.com



